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Abstract 

Dominoes is a partially observable extensive form game with probability.  The 

rules are simple; however, complexity and uncertainty of this game make it difficult to 

apply standard game theoretic methods to solve.  This thesis applies strategy prediction 

opponent modeling to work with game theoretic search algorithms in the game of two 

player dominoes.  This research also applies methods to compute the upper bound 

potential that predicting a strategy can provide towards specific strategy types. 

Furthermore, the actual values are computed according to the accuracy of a trained 

classifier.  Empirical results show that there is a potential value gain over a Nash 

equilibrium player in score for fully and partially observable environments for specific 

strategy types.  The actual value gained is positive for a fully observable environment for 

score and total wins and ties.  Actual value gained over the Nash equilibrium player from 

the opponent model only exist for score, while the opponent modeler demonstrates a 

higher potential to win and/or tie in comparison to a pure game theoretic agent. 
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OUTPERFORMING GAME THEORETIC PLAY WITH OPPONENT 
MODELING IN TWO PLAYER DOMINOES 

I.  Introduction 

Problem Statement 

The game of dominoes is a partially observable extensive form game (or POEFG) 

with probability.  An extensive form game is a game in which each player takes an action 

and there are payoffs as a result of the actions made [22].  The rules (found in Appendix 

A) are simple.  With its numeric tile structure and straightforward rule set, dominoes is a 

resizable game which allows researchers to examine simple to very complex versions of 

POEFG’s with probability by only adjusting a few parameters in the game.   

Dominoes is also probabilistic nature.  The rules state that there is a boneyard (i.e. 

the pile of faced down dominoes) that players pull from when there is no available play.  

This adds the element of chance to the game tree.  Moreover, players can only view their 

hand of play and the contents on the board.  They cannot see their opponents’ hands or 

the boneyard. 

The goal of this research is to produce an opponent modeling algorithm that can 

predict an opponent’s style of play as well as provide an optimal move in a partially 

observable environment with probability.  This research focuses on choosing optimal 

moves by exploiting the opponent’s strategy in place of applying the Nash equilibrium 

solution.  (Nash equilibrium is achieved when a player, given strategies of other players 

in the same game, has nothing to gain by unilaterally switching his strategy [25].)    

Common algorithms like MiniMax (explained in Chapter 2) apply a Nash Equilibrium 
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(NE) solution to select optimal moves. This research evaluates the expected and actual 

gain in value that a specific opponent modeler provides over a NE solution for the game 

of two player dominoes.  The next section outlines the complexity of dominoes as well as 

how this game is simplified to perform this research. 

Complexity of Dominoes 

There are several factors that influence computational complexity in dominoes.  

The first element of complexity involves the branching factor because the larger the 

branching factor becomes, the longer a decision engine has to search to find the best 

action. (Often the growth rate is much worse than linear and often even worse than 

polynomial).  The number of starting states also makes a big impact on the game because 

unlike many board games such as tic-tac-toe and chess, dominoes bears billions of 

starting states (as illustrated in Table 1 and Equation 2).  Lastly, dominoes is a game of 

partial observability where many aspects of the game are hidden.  Furthermore, dominoes 

adds probability with boneyard pulls.  All of these issues make solving dominoes a hard 

problem. 

Branching Factor.  

The branching factor of dominoes is calculated by examining the number of 

possible actions or moves per turn.  This number involves the number of dominoes in a 

player’s hand and the number of places that a domino can be positioned on the board.  

Additionally, a domino can be placed in more than one location depending on the domino 

and the player’s strategy.  Figure 1 illustrates how dominoes can be placed on the left or 

right side of the spinner, (the first domino placed on the board.)   
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Figure 1:  Example instance of double-6 dominoes game tree where the opponent has all 
possible responses to spinner. 

 

This factor multiplies the branching factor by up to four depending on legal plays 

available. 

Starting State.  

The starting state of dominoes is important in comparing this game with fully 

observable board games such as chess because board games tend to only have a single 

starting position.  Dominoes is interesting because the starting state possibilities change 

depending on the number of players in the game and the size (or number of dominoes) of 

the set.  Games like poker also have multiple start states; however, unlike poker 

dominoes has multiple payouts throughout the game instead of one main payout at the 

end of a hand. 

To calculate the number of starting states in two player dominoes, the set size 

must be found first.  The set size depends on the domino with the highest pip count in the 

set.  Set size is calculated by applying 



 

 

4 

 

 

 
(1) 

   

where n represents the highest pip count in a set of dominoes + 1 (i.e., for double-6 

dominoes, n = 7).  One is added to the highest pip count to account for the zero (or blank) 

dominoes.  By applying Equation 1, double-6 dominoes contain 28 dominoes while 

double-3 dominoes contain 10 dominoes.  Now that the set size is calculated, Equation 2 

illustrates the number of possible starting states for two player dominos with set size L 

and a boneyard size B. 

 

 
(2) 

Where SS is the number of starting states, L is the size of the set, B is the boneyard size 

(B ≤ L-2) and D is the size of a player’s hand (both players have equal hand sizes).   

Table 1 illustrates how the number of starting states grows exponentially as the pip size 

grows. 

Table 1:  Table of Starting States for Dominoes. 

Pip Size Dominoes in set Distribution Starting States 
Double-2 6 2-2-2 20 
Double-3 10 3-3-4 4,200 
Double-4 15 5-5-5 576,576 
Double-5 21 7-7-7 271,591,320 
Double-6 28 9-9-10 6.38 × 1011 
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While strategies in many board games involve computing a set of plays based on a single 

board state, 638 billion starting states make it very difficult to compute the perfect play 

for any starting state at the beginning of a game. 

Uncertainty. 

Dominoes is also a partially observable game with probability.  This adds the 

element of uncertainty to the complexity of the game by introducing chance nodes and 

information sets.  A chance node is a position on the game tree in which probability is 

associated with the action taken.  For dominoes, chance nodes arise when a player pulls 

from the boneyard.  Information sets are positions on the game tree in which the agent 

has no knowledge of its position on the tree.  Figure 2 illustrates a partially observable 

game instance (constructed in Gambit software [21]) of double-2 dominoes where there 

are two player agents, the player (red) and opponent (blue).  There is also a chance agent 

(green) that represents the probabilistic property of drawing dominoes from the boneyard.   

The player agent can observe its own two dominoes that are (1|1) (where (1|1) 

represents the one-one domino) and (1|0); however, it cannot see the target agent’s two 

dominoes or the other two dominoes in the boneyard.  From the player’s perspective, the 

target and boneyard share a uniform distribution of the dominoes (2|2), (2|0), (2|1) and 

(0|0) with each entity having 2 unknown dominoes [21].   
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Figure 2:  Partially observable game with probability (created with Gambit game theory software [21]). 
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Information sets (labeled by dashed lines) indicate a set of nodes in which players 

cannot be sure to which node they belong.  For dominoes, information sets represent 

instances when players cannot differentiate the opponent’s current state or future action.   

Because of this uncertainty, a decision engine must evaluate all possible outcomes and 

payouts to calculate an accurate expected value of the game from every member of the 

information set.  This means that the engine must account for every possible combination 

of dominoes between the target and the boneyard.  This adds more computational 

complexity to solving the game.  Applying this logic, the game instance in Figure 1 must 

compute the current complex problem (branching factor of 6) along with every other 

possible start state (or �19
9 � = 92,378  starting states, including each state’s branching 

factors) of the opponent, assuming the player hand stays the same.   

Simplifying the Game 

In order to solve a game of dominoes for this research, the game must be 

simplified.  One way to simplify the game of dominoes is to use subsets of the total set of 

dominoes, where the total set of dominoes is 28 dominoes ranging from (0|0) to (6|6).  A 

subset of dominoes ranges from (0|0) to a smaller value domino such as (2|2) with six 

dominoes or (3|3) that contains 10 dominoes.  This is depicted in Table 1. 
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Scope 

The scope of this research involves producing an algorithm that has the ability to 

make predictions of the opponent’s strategy as well as producing an optimal move for a 

player agent.   

Limitations  

Experimentation for this research employs double-3 dominoes.  A set of double-3 

dominoes contains enough dominoes to evaluate two player dominoes games with 

partially observable information and chance nodes.  For this research, the starting state of 

all games includes two players’ hands of three dominoes with a boneyard size of four.  

This subset of dominoes is chosen because it is the smallest subset of dominoes that still 

provides enough dominoes to have a boneyard size slightly larger than one player’s hand 

size (that is similar to play in a full set).  For instance the starting state of double-6 

dominoes consists of nine dominoes in both players’ hands with a boneyard size of 10 

dominoes.  In addition, larger boneyard sizes create larger branching factors at chance 

nodes. 

Additionally, all games end after the first round.  In other words, after the first 

domino hand is played, the participant with the highest score wins.  Playing only one 

round is different than establishing a predefined score and playing many rounds until that 

score is achieved. Since these limitations do not affect the basic rules of the game or how 

it is played, more computations can be applied to solve this problem. 
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Assumptions 

Research is conducted under the assumption that there is no bluffing involved in 

dominoes.  Bluffing in dominoes entails a player implying he or she lacks an available 

play by pulling from the boneyard even if he or she has and existing play.  All domino 

rules applied in this research come from Domino Basics and Domino [2, 12]. It is 

assumed that all domino rules followed from this reference apply to real world domino 

games. 

Contributions 
 

This research project contributes in the areas of game theory and opponent 

modeling.  The research presents empirical evidence showing that, for three different 

strategy opponents, there is potential and actual value gained over a game theoretic player 

by exploiting an opponent’s actions.  Furthermore, this research confirms the actual value 

computed by employing an MDA classifier predicting three different playing styles in the 

game of dominoes.   

Methodology 
 

To complete this research, a simple dominoes agent is developed to play games 

according to the rules of dominoes.  The agent is required to facilitate every start state of 

double-3 dominoes between a player agent and three different opponent types.  The 

player agent uses an opponent modeling algorithm to predict the type of the opponent.  

The player agent plays incorporating opponent’s type into a backwards induction 

algorithm [25] to maximize score.   
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Results show the expected and actual value gained by the opponent model as well 

as how well it predicts the opponent type.  The expected value gain of the opponent 

model is a calculation of the highest gain in value (over a Nash equilibrium player) that 

an opponent model can provide against a specific opponent strategy.  This gain is 

computed by recording the value of applying an oracle (opponent model with 100% 

prediction accuracy) to the player subtracting a value computed applying Nash 

equilibrium decisions with no oracle.  The actual value gain is the gain in value over the 

Nash equilibrium player while applying an opponent classifier in place of the oracle.  The 

prediction accuracy of the opponent classifier is calculated by taking a ratio of the 

number of correctly predicted targets over the number of attempts to predict a specific 

target. 

Results 
 
Empirical results show that there is a potential value gain over a Nash equilibrium 

player in score for fully and partially observable environments for specific strategy types.  

The actual value gained is positive for a fully observable environment for score and total 

wins and ties.  Actual value gained over the Nash equilibrium player from the opponent 

model only exist for score, while the opponent modeler demonstrates a higher potential to 

win and/or tie in comparison to a pure game theoretic agent. 

Thesis Overview 
 
Chapter II of this thesis discusses previous work in the field of game theory and 

opponent modeling as well as definitions of many of the concepts discussed in this thesis.  

Chapter III illustrates how the algorithm is created and implemented, while Chapter IV 
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discusses and analyses the results of the implementation and testing.  Finally, Chapter V 

concludes this thesis and discusses future work. 
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II. Literature Review 

In Game theory there are many ways to overcome an opponent.  The following 

sections acknowledge concepts from previous work in the areas of game theoretic tree 

search and opponent modeling.  This chapter also provides details of the advantages and 

limitations to game tree search.  Furthermore, this chapter illustrates the benefits of 

opponent modeling in partially observable strategy games.  

Fully Observable Games 
 
Chess is a game of perfect knowledge.  Games with perfect knowledge are called 

fully observable games [26].  Deep Blue applies game tree search in chess.  In doing so, 

this system was able to defeat chess world champion Garry Kasperov[5, 26].  The Deep 

Blue agent models a chess board and makes predictions based on outcomes (in most 

cases) 14 game tree layers in advance.  Fully observable board games like checkers, chess 

and go are constantly researched in efforts to find more efficient winning strategies.     

With perfect knowledge, programming an agent can be as simple as implementing 

a game tree and performing a search to find the optimal move for each turn; however, 

problems (such as increased search times and stack overflows) commence as the game 

complexity increases.  Additional issues arise when choosing the best evaluation 

function, which is simply the algorithm which returns the best prediction of the value of 

the game at a specific node.  MiniMax is a search algorithm that invokes on an evaluation 

function and “serves as the basis for mathematical analysis of games” [26]. 
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MiniMax Search 

When working with a complex search tree to find the optimal move to make at 

every level of the tree, a wise decision is to limit the counter move that the opponent is 

capable of making for that turn.  This is done by choosing the move that maximizes the 

player’s chance of winning, while minimizing the opponent’s winning chances.  

According to Funge and Millington [14], it can be easy to predict chances of 

winning towards the end of the game based on the minimal count of plays remaining.  

Conversely, counting remaining plays can be more difficult in the beginning and middle 

of the game, because of the uncertainty of where the game ends.  Therefore, an evaluation 

function is employed to predict how the end game states appear [14].  This function can 

also be called a heuristic function on a game tree search. 

For this search to work, the player and the opponent or adversary are labeled the 

terms “MAX” and “MIN,” respectively.  Furthermore, as explained above, each level of 

the game tree represents one of these participants.  

Figure 3 illustrates how the evaluation function depicts values at every node in the 

tree in terms of MAX and decides the most advantageous move to make.  This algorithm 

is assessing every move possibility in the game tree with an evaluation function to predict 

the ending score in the leaf nodes.  The algorithm then cycles this final score up through 

the nodes to the two possible moves that MAX can take.  The node with the highest score 

MIN will allow is chosen [17]. 
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Figure 3:  MiniMax game tree. 

 

As shown in Figure 3 MAX chooses the right node at a value of 2.  This 

assessment is completed at every turn throughout the game until a terminal (win, loss or 

tie) state is achieved.  

The Expectimax (EM) algorithm [26] is applied to MiniMax to account for 

probability (chance nodes) within the game tree.  Equation 3 illustrates the value 

calculated at a chance node within a tree with probabilistic nodes [16].  This equation 

states 

 
𝐸𝑥𝑝𝑒𝑐𝑡𝑖𝑚𝑎𝑥(𝑠) = �𝑃(𝑐ℎ𝑖𝑙𝑑𝑖) ×

𝑛

𝑖

𝑈(𝑐ℎ𝑖𝑙𝑑𝑖) (3) 

 

where P(childi) is the probability of a specific child node of s and U(childi) is the utility 

value of childi and n is the number of chance options (for this research, dominoes in the 

boneyard).   
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Stochastic Partially Observable Games 

A game is said to be partially observable and stochastic if there is any random and 

hidden information.  Examples of this type of game are card games such as Poker and 

Bridge where players are dealt random hands hidden to their opponents [26].  

Furthermore, as stated in the last chapter, the game of dominoes also shares this trait.   

Partially observable stochastic games take on many forms and fashions.  Card 

games like Poker and Bridge are partially observable because participants are unaware of 

their opponent’s cards.  This concept also holds true for games like dominoes.  The 

stochastic element is encompassed in random card distribution [26] as well as pulls from 

the boneyard.  Non-stochastic elements of dominoes such as a fixed opponent strategy 

can be modeled by applying opponent modeling techniques. 

Game theory and Opponent Modeling 
 
Game theory can be augmented by modeling an opponent’s future actions and/or 

current state.  Ross’s [25] definition of game theory outlines how it is applied to various 

applications:  

Game theory is the study of the ways in which strategic interactions among 
economic agents produce outcomes with respect to the preferences (or utilities) of 
those agents, where the outcomes in question might have been intended by none 
of the agents [25]. 
 

This means that when two agents interact with one another, even though each agent has a 

desired outcome, the outcome of that interaction could be in the favor of one, all or none 

of the agents involved.  Modeling an opponent allows the player to better decide which 

action it needs to take to receive the best possible utility (or quantified outcome) in a 
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game situation.  The first part of this section discusses the M* search algorithm that aids 

a game theoretic approach by providing an opponent model to adversary search 

(MiniMax).  The second part discusses research in applying opponent modeling to poker.  

Later discussed is how neural networks are employed to learn an approximation of the 

opponent model that has lower memory requirements than the full opponent model in 

order to simplify the opponent space and expand the amount of opponents that can be 

modeled.  Lastly is a discussion of how to rank opponent models in order to choose an 

optimal model.   

M* Search. 

This section discusses Carmel and Markovitch’s M* search algorithm [6].  The 

goal of this search algorithm is to take advantage of the opponent’s weaknesses 

(tendencies to make plays other than game theoretic equilibrium moves) throughout the 

game.  To accomplish this, M* applies an opponent model to the MiniMax algorithm.  

Results from running this algorithm demonstrate a higher winning percentage in fully 

observable extensive form games.  

The M* search algorithm employs an opponent model in order to exploit the 

opponent’s weaknesses through adversarial search [6].  Assuming an accurate opponent 

model, the information obtained provides to the player an advantage of playing a best 

response to the opponent’s modeled strategy instead of the best response to a presumed 

Nash Equilibrium opponent.  This situational awareness offers the player more 

opportunities to win games that are otherwise unwinnable in equilibrium play.  M* works 

by identifying instances in the game where an opponent underestimates the potential of a 
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certain action and chooses a move with less value, or times when the opponent 

overestimates the potential of a move and takes a detrimental action.  These occurrences 

are called swindle and trap positions respectively. 

The M* algorithm works similar to MiniMax by employing an evaluation 

function and search depth to maximize what a player can achieve in a certain play; 

however, the difference is that M* incorporates an opponent model to provide the 

specific action of the opponent.  This provides the algorithm information on how the 

opponent may differ from the Nash Equilibrium opponent.  The following definition by 

Carmel and Markovitch, further explains how this opponent model is applied to the 

algorithm. 

1. Given an evaluation function f, P = (f, NIL) is a player [6] (with a modeling-level 

0, or search depth of zero). 

2. Given an evaluation function f and a player O (with modeling level n - 1), P = (f, 

O) is a player (with a modeling level n). 

The modeling level of the opponent corresponds to the level in which the player 

models the opponent.  For example, a player with a modeling level of zero does not 

model its opponent.  The modeling level of 1 models an opponent with a modeling level 

of zero and so on [6]. 

The player P from this definition is used as the opponent model.  Using P in the 

equation, the input of M* becomes <position, depth, (fpl, P)>, where fpl is the player’s 

evaluation function and P is the opponent model [6].  The output of M* is either a value, 
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a state or both depending on the preference of the software designer.  Figure 4 illustrates 

the algorithm [6]. 

 
Figure 4:  M* Algorithm [6]. 

Figure 5 shows an example game tree that illustrates the recursive calls by the M* 

algorithm [6].   
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Figure 5: Game tree recursive search of M* with M*(a,3,f2(f1,f0)) [6]. 

 
 

The example in Figure 5 illustrates how the player “swindles” the opponent by 

convincing the opponent that the player will select leaf node-o; however, the player 

actually chooses node-n.  This occurs as a result of the opponent’s model of the player 

presuming the player is using the f0 evaluation function.  Since this is the case, the 

opponent’s model propagates a value of -6 to node-b and a 0 to node-c.  Nonetheless, the 

player is really using the f2 evaluation function that returns a value of 10 from node-n.  

This value is strong enough to propagate back to the root (through backward induction) 

and become the max value for the player.  This value is also the highest value of all f2 leaf 

node evaluations.  One thing to note here is that a standard MiniMax evaluation of this 

game using the f2 evaluation function yields 7.  Therefore, this evaluation demonstrates 

that M* potentially results in higher scores than MiniMax. 
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Carmel and Markovitch’s results from this study show that M* is more effective 

than a Nash Equilibrium agent at winning at checkers extensive form games.  Their tests 

result in a higher number of wins and higher scores achieved in total against opponents in 

the fully observable games of tic-tac-toe and checkers. 

The M* algorithm is an interesting culmination of logic in that it not only 

attempts to acquire the best value for the player, but it also works to exploit the weakness 

of the opponent.  M* shares many concepts of MiniMax; however, it differs from 

MiniMax by employing an opponent model, that predicts moves based on the opponent’s 

strategy.  This type of logic can be used to expose higher scoring games and/or wins that 

Nash Equilibrium does not allow; however, this opponent modeling research example 

only accounts for fully observable games.  The next two sections provide examples of 

opponent modeling use for partially observable games. 

Opponent Modeling in Poker.  

When researching opponent modeling for partially observable games, Poker is 

one of the most popular games researched.  This section describes two agents that model 

opponents in the area of opponent modeling in poker.  The first is an agent called Loki [3, 

11].  This agent applies weights to possible opponent states (or hands) based on the 

opponent’s actions on previous rounds.  The second agent called Poki [10], builds on 

Loki by predicting potential actions the opponent will select.  Both methods are shown to 

be effective against opponents in open forums and closed environments.  

Loki is an approach to opponent modeling in poker that is “capable of observing 

its opponents, constructing opponent models and dynamically adapts its play to best 
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exploit patterns in the opponent’s play” [3].  This agent applies a probability distribution 

to the opponent’s potential cards by assigning and updating weights to those possibilities 

as the opponent bets, raises or calls.  Statistics are then reevaluated every time the 

opponent takes an action updating the opponent model. 

Table 2 illustrates a subset of every possible opponent hand in a hand of Texas 

Hold’em [3]. 

Table 2:  Re-Weighting of Various Hands after the Flop [3]. 

Hand Weight HR HS ~PP EHS Rwt Nwt Comments 
JH, 
4H 0.01 0.993 0.99 0.04 0.99 1 0.01 very strong, not likely 

AC, JC 1 0.956 0.931 0.09 0.94 1 1 strong, very likely 

5H, 
2H 0.6 0.004 0.001 0.35 0.91 1 0.2 weak, good potential 

6S, 5S 0.7 0.026 0.006 0.21 0.76 0.9 0.54 moderate, low 
potential 

5S, 3S 0.4 0.816 0.736 0.04 0.74 0.85 0.6 mediocre, moderate 
potential 

 

were, the numbers in the first column represent the number on a playing card and the 

capital letters represent the first letter in each suit (i.e, S is for Spades, H is for hearts).  

The purpose of the table is to show how each hand is re-weighted after the flop.  For each 

possible hand the opponent modeler’s algorithm calculates the initial weight (Weight), 

un-weighted hand rank (HR), hand strength (HS), and other factors leading to a new 

overall weight (Nwt) [3].  To explain how this table works, Billings gives details on QS-

TS.  He states that though this is a strong hand at first, when accompanied with a flop of 

3H-4H-JH, the hand strength is then calculated low at 0.189 (where 1 is high and 0 is 
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low).  This is because there are other potential hands available that can better maximize 

on this flop.  After further calculations the algorithm yields an effective hand strength 

(EHS) of 0.22 for this hand.  Consequently, per statistical observations of the opponent, 

this is lower than the hand strength they usually bet on.  The potential hand is then 

assigned a new weight of 0.01.  Furthermore, the new overall weight along with the 

opponent’s next action is the key predictor of whether the opponent has that hand or not.   

When played 100,000 games against controlled setup models, Loki was ahead by 

approximately $5,000 while the other models were down $550.  Loki also does well in 

online poker play against humans; however, not enough information is present to show 

that it can outperform previous best programs [3].   

Poki is an AI poker agent that also plays on an online poker server with human 

players.  It is used to store game data for poker research [11].  This application is a 

successor to Loki.   

One improvement made in this application simplifies the opponent modeling 

process by eliminating the re-weighting table and an artificial neural network (ANN).  By 

eliminating the re-weighting approach, this framework alleviates the burden of 

accounting for a number of active opponents and betting positions.  This reduces the 

systems labor factor [11].  Furthermore, the Poki models specific opponents which allow 

it to make more informed decisions. 

An ANN is a machine learning algorithm that loosely represents a biological 

neural structure, or brain [11].  Davidson also states that neural networks “typically 
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provide reasonable accuracy, especially in noisy domains.  However they rarely can 

produce better results than a more formal system built with specific domain knowledge.” 

Figure 6 employs the inputs from Table 3 [10].  The ANN in Poki is trained by 

applying back-propagation [10] (or supervised learning process for ANNs).   

 

Figure 6:  A neural network predicting on opponent’s future action [10]. 

The figure illustrates how the neural network makes use of the 17 inputs in 

Table 3 and makes a decision on whether an opponent will Fold, Check/Call or Bet/Raise 

[10]. 
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Table 3:  Neural Network Inputs [10]. 

# Type Description 
0 real Immediate pot odds 
1 real bet ratio 
2 bool Committed 
3 bool one bet to call 
4 bool two or more bets to call 
5 bool betting round = turn 
6 bool betting round = river 
7 bool last bets called by player > 0 
8 bool players's last action ws a bet or raise 
9 real 0.1 X num Players 

10 bool active players is 2 
11 bool player is first to act 
12 bool player is last to act 
13 real estimated hand strength for opponent 
14 real estimated potential strength for opponent  
15 bool expert predictor says they would call 
16 bool expert predictor says they would raise 
17 bool Poki is in the hand 

 
Poki was able to routinely predict opponent actions with an 80% accuracy, while 

sometimes achieving accuracies of 90% [11].  While Poki makes a significant 

improvement to state only predictions, it requires a significant amount of data to function 

properly against a diverse set of opponents [20].  The next section describes how 

opponent models can be generalized creating a more robust agent. 

Generalizing Opponents to Simplify the Opponent Space. 

This section describes how opponent modeling can be generalized to use in game 

theoretic solutions of a partially observable extensive form game.  The partially 

observable extensive form game covered in this section is called Guess It [19, 20].  

Because of hidden game state information in partially observable games, game theoretic 
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solutions such as MiniMax become difficult or non-useful to apply.  To make this 

information visible, predictions must be made using techniques such as opponent 

modeling.  “Opponent models are necessary in games where the game state is only 

partially known to the player” [20].  At the same time, many opponent models are used to 

train against specific opponents deeming it time consuming to train an agent against 

multiple different opponents.  Locket, et al solve this problem by generalizing opponent 

types in Guess It allowing for an opponent model to play against many different 

opponents without training against opponent-specific models [20].   

Guess It is a game where each player is dealt an equal number of cards (usually 

6), and one card is faced down on the table for players to guess.  Participants cannot see 

each other’s cards making this a partially observable game.  The goal is for participants to 

figure out the identity of the card faced down by taking turns obtaining and giving 

information about each other’s hand.  In each turn, players have three possible actions.  

The first is to identify the faced down card.  The second possible action is to “ask” the 

opponent for a card that player does not have.  Players can also “bluff” by asking for 

cards that they already have.  The participant who identifies the hidden card wins, while 

any false identification of the hidden card is an automatic loss.  

Game theoretic solutions such as MiniMax and other variants of MiniMax make it 

simple to find the best move in many extensive form games; however, hidden 

information in Guess It complicates play because the game state is not as obvious.  Other 

game theoretic solutions include partially observable Markov decision processes 

(POMDP’s) though, for games with more than just a few states, POMDP solutions 
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become intractable [24].   This makes opponent modeling a great resource for solving 

games with hidden information. 

Opponent modeling inputs an opponent’s previous actions to a learning engine to 

help predict the opponent’s state or next action.  In many cases opponent models learn 

through machine learning tools such as classification algorithms or neural networks.  

These tools are used to predict opponent characteristics by using game state features as 

inputs.  Opponent characteristics are associated to classes identified by features entered 

into the tool.  Each model is opponent-specific, meaning that for each opponent, a new 

model must be developed.  This becomes a time management challenge for training for 

several opponents. 

Lockett solves the specific opponent problem by generalizing opponents in the 

game of “Guess It” and employing mixture models.  A mixture model in this research is a 

probability distribution over a “cardinal set” of opponents [20].  In this research, the 

cardinal set contains four different opponent-type categories.  Each one of these types has 

high potential to defeat another specific type as long as that type is identified.  A mixture 

model identifier employs neural networks to predict player-types through a supervised 

learning process.  From here, the agent can make a decision based on which opponent it 

is playing.  Experimentation was conducted using a mixture model based player and a 

controlled setup player. 

The four opponent-type categories of the cardinal set consist of Always-Ask, 

Always-Bluff, Call-then-Ask and Call-then-Bluff.  Always-Ask never calls or bluffs, 

while Always-Bluff never asks or calls.  The Call-then-Ask agent attempts to name the 
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center card if the other player asks for a card the Call-then-Ask agent lacks, otherwise it 

asks, while Call-then-Bluff calls every potential bluff; otherwise it bluffs [20].  

In the cardinal set, each player-type has an effective counter measure for another 

specific player type.  For example Table 4 illustrates all the hierarchy of all strategies.  

Each strategy is able to defeat one of the other strategies.   

Table 4: Guess It Strategy Hierarchy Matrix [20]. 

Strategy Defeats 
Always-Bluff Call-Then-Bluff 

Call-Then-Bluff Call-Then-Ask 
Call-Then-Ask Always-Ask 

Always-Ask Always-Bluff 
 

As long as the agent correctly models which opponent-type it is playing, it can 

determine which strategy to use against it. This serves as the basis of generalizing player 

types. 

Figure 7 illustrates the block diagram of mixture based architecture developed by 

Locket, et al. [20].  The model includes two modules of integration.  The mixture 

identification module accepts the game state as an input and identifies a mixture.  The 

mixture in this diagram is a probability distribution over all possible opponents in the 

cardinal set.  The decision module accepts the mixture as well as a board state and makes 

a decision on whether to bluff or call.  The default move is to ask [20].   

The controlled setup player in this experiment employs only the decision module.  

While there is the absence of the mixture identification module, the controlled setup has 

an identical training and validation regimen.  The absence of a mixture identification 
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module in the controlled setup allows for testing the performance of the mixture 

identification module of the mixture based player. 

 
Figure 7:  Mixture-Based Architecture for Opponent Modeling in Guess It [20]. 

 

By generalizing opponent-types in a mixture model, the agent was able to win an 

average of 71.3% of 220,000 games played against 11 diverse opponents, while the 

controlled setup won an average of 57.7% [20].  This diverse set of opponents included 

the cardinal set opponents as well as unknown opponent types.  When playing against all 

unknown player types, the mixture model based player won an average of 61.5% games, 
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while the controlled setup player won an average of 54.6% of its games.  In addition, 

when played 20,000 games against the control player, the mixture model won an average 

of 77.6% of the games.  Lockett, et al. also state that all results are statistically significant 

with to p < 0.05 [20].  This shows that generalizing an opponent has the ability to apply 

opponent modeling on a broader scale without training against every different opponent.   

Environment Value.  

The discussion in this chapter involves many different methods of opponent 

modeling.  The question to ask is which type is the best to use for an agent in a specific 

environment.  This section bridges the gap into which model will be optimal to use 

compared with other opponent model types. 

Opponent modeling has the potential to improve a player’s expected score or 

winning potential in a game depending on the environment in which the game takes place 

[4].  This value of a game is improved by utilizing two classes of agent models.  The first 

model type is the opponent’s state in the game and the second model is of the opponent’s 

actions.  Given an accurate model of both of these features improves the value of the 

game to the player’s favor.  The environment value of an opponent model is the game 

theoretic value improvement that a particular opponent model will provide an agent given 

the environment.  This environment value indicates an “upper bound to the potential 

performance improvement of an agent” [4]. This section explains how these features (if 

accurately modeled) help to improve the game theoretic value of a game. 

Borghetti states that an agent model is a function or method that “predicts 

something” about another agent [4].  As stated above, agent models can be employed to 
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predict information such as the state and/or the action of another agent or opponent.  This 

information is then used to select optimal moves.  Optimal moves are selected using 

game theoretic algorithms such as MiniMax or the probabilistic variant Expectimax (EM) 

[26].  

The state of a game involves all information about the game at a particular 

instance in time.  In computer science parlance, the state of a game can be compared to a 

node on a tree.  The class of state opponent models provides a probability distribution 

over all possible states [4].  For example, for any number of possible states that an 

opponent can belong to, the probabilities of all states must sum to one. 

This logic is also true for the class of opponent models that predict the actions of 

an opponent.   Actions are classified as the strategy or move that the opponent (or any 

participant in the game) will make at a given state in the game.  As explained in the 

previous paragraph, this model class provides a probability distribution over all actions. 

The environment value (V_Lambda) is the maximum improvement of the game 

theoretic value given a certain environment.  This value is the difference between an 

environment using a perfect model and environment using no model at all.  Equation 4 

[4] illustrates this explanation. 
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(4)  

Where: 

Γ – The original game with no opponent model 

Γ′ – The transformed game with a perfect opponent model 

𝑈(M) – The utility gained in a game 

𝑀 – A particular model that provides a probability distribution over actions or states  

Borghetti states that given an environment, an upper bound can be developed for 

an environment to use as a baseline for any opponent model (in its class) to follow [4].  

This upper bound baseline is developed by employing a perfect information agent model 

or oracle to provide an optimal state or action set.  The oracle is employed to display the 

maximum potential that an opponent model can deliver.  Assuming MiniMax (or similar 

algorithm) is employed and all play is rational, if a model cannot do any better, the 

resulting value is the Nash Equilibrium. 

The precondition to finding the environment value is that the Nash Equilibrium of 

a game can be found.  For this research, this requires solving the game of dominoes, 

which is not possible with today’s computers.  “When this precondition does not hold, we 

may be better off approximating the environment value using an estimation of the 

distribution over likely opponents.” [4].  This research focuses on finding the expected 

potential value gained from the information an action opponent model can provide 

against specific opponents.  Therefore the environment value is not calculated. 

)|()'|()( Γ−Γ=Γ MUMUMV
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Game theory has many applications that benefit from opponent modeling today.  

The goal of applying opponent modeling is to provide information on the current state or 

future actions of the opponent.  Carmel and Markovitch’s [6] M* search provides a lot of 

insight on opponent actions to show where to capitalize on opponent mistakes in a fully 

observable environment.  If there is a way to employ M* to a partially observable 

environment, this opponent modeling algorithm could add value to dominoes.   Billings 

and Davidson, et al. [3, 11] have made vast improvements to how poker is played online 

by applying models to predict opponent states and actions; however, this research 

requires a lot of data processing to be optimal.  Locket [20] solves this problem by 

generalizing opponents into a cardinal set (or two-dimensional space of opponents 

defined by the probability of calling or bluffing [20]), in which each decision is made by 

applying the action of the generalized model.  If opponents in dominoes can be 

generalized, applying opponent modeling to dominoes should be a quicker and less data 

intensive practice.  Lastly, Borghetti shows how to choose the best opponent model for 

specific environments.  Any opponent modeler applied in current two player dominoes 

research should apply Borghetti’s technique as a baseline.   

Other Methods. 

Donkers’s [13] probabilistic opponent model search or PrOM search involves 

computing a probability distribution over several opponent types in order to make a 

decision.  PrOM search applies an approximation over several strategies, whereas this 

research will apply the exact strategy of the opponent. 
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Cowling [9] creates an ensemble method for determination of Monte Carlo Tree 

Search (MCTS).  Cowling’s research involves applying MCTS and upper bounds on 

Trees (UCT) to solve probabilistic games with hidden information.  The research applies 

these methods to the game of Magic: The Gathering in order to study many different 

heuristics that can solve this complex game.  While dominoes has probability and hidden 

information, the focus of this research is not to develop heuristics to solve dominoes as 

the simplified version of the game allows for a search to the leaf nodes of the game.  The 

main focus of opponent modeling for this research is to predict target’s strategy and 

attempt to find an optimal move on a shallow game. 

Dominoes AI Agents. 

Although there are many online dominoes games available, academic research has 

been completed in creating dominoes graphical user interfaces in C++, Java and BASIC.  

Versions have been found that employ each language respectively.  The C++ version is a 

single game GUI entitled Domino 1.2.0 [23].  This version is created by using the Qt 

Creator Library.   The Java version Badomino [18] is also a single game domino 

interface.  Smiths [28] BASIC version is a game that employs strategy tables and learning 

techniques to make optimal moves. 

Domino 1.2.0 provides a user interface that plays a single hand of double-6 

dominoes while keeping score.  It also tells the user who wins the game at the end.  While 

the project is completed in a familiar language and library there are some limitations.  

The first limitation is that most of the code and comments are in Russian.  While the code 

provides a useable GUI, the code is difficult to decipher.  There is also no way to scale 
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the code from double-6 to a smaller (or larger) set of dominoes for experimentation 

purposes.  Lastly, there is no experimental control to run many games in sequence. 

The main focus on the Badomino project is to build a well working domino 

graphical user interface employing AI logic; however, more emphasis is placed on the 

goodness of the GUI itself.  The AI module employs myopic strategies; however, it does 

apply AI to determine the best myopic strategy to employ.  Furthermore, this is also a 

single game system that is not scalable for smaller or larger sets of dominoes.   

Smiths learning algorithm involves strategy learning.  This technique applies a 

model that plays hundreds of games against itself to learn many situations of the game in 

order to make an optimal move against other opponents.  Smith’s research applies 

strategy tables to avoid applying techniques used for fully observable games.  This 

research applies opponent modeling and roll-out techniques to overcome many of the 

barriers involved with partially observable games. 

Conclusion 

Game theory is a complex field in which research is conducted implementing 

search trees and other graphical figures to play games at an optimal level.  When 

traversing a tree in adversarial games, MiniMax search implements an evaluation 

function that estimates the value of the game at that point in order to optimize every 

action.  The drawback of this search is that its purpose is to work in a fully observable 

environment.  Opponent modeling is used in many in many applications in order to 

produce a better estimate on imperfect information to make the best prediction.  The next 
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section explains how opponent modeling will be used in two-player dominoes to make 

the best prediction in a stochastic partially observable environment. 
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III.  Methodology 

Introduction 

This chapter describes the methodology of how a dominoes artificial intelligence 

agent employs opponent modeling to achieve improved knowledge of the opponent 

strategy in order to optimize the decision making process.  The chapter starts with the 

definition of the problem.  Next, the experimental setup is explained.  Lastly, this chapter 

explains how each agent of the experimental setup is tested. 

Problem Definition 
 
Goals and Hypothesis.  

The goal of this research project is to show how well modeling an opponent’s 

strategy can improve a player’s decision in two player dominoes.  When an opponent’s 

strategy is unknown (assuming all players are rational), the optimal strategy is to achieve 

a Nash equilibrium through an adversarial search.  MiniMax (a type of adversarial 

search) can be applied to this research by creating a game tree representation for the 

game of dominoes.  Figure 8 illustrates a simple game of dominoes where the player and 

opponent both pull three random dominoes from a full set of double-6 dominoes.  Each 

board picture represents a node on a game tree.  The position on the game tree is called 

the game (or board) state.  This tree represents all possibilities of playing this game 

instance between the two players.   
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Figure 8:  Game tree representation of dominoes. 
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If the opponent plays with a non-rational strategy, another equilibrium can be 

achieved that capitalizes on non-rational actions made by the opponent.  This is achieved 

by applying M* search [6], which replaces MIN’s strategy with an opponent model.  In 

order to use M* search, an opponent model (or strategy) must be identified.  This concept 

generates the research question “how does M* search perform in the game of dominoes?” 

In addition to finding and evaluating the opponent model, another challenge arises 

in applying M* search to a partially observable game.  The issue with applying a search 

algorithm to a partially observable game is that the level of certainty in the location on a 

game tree is much worse than in a fully observable environment.  Without accurate board 

state data, potential exists for the search method to traverse a game tree with an erroneous 

game instance, reducing the possibility of finding an optimal play. 

Approach. 

To solve these problems, this project centers around a hierarchal approach that 

focuses on employing an opponent classifier to predict opponent types [27].  Then a 

decision engine for the player agent uses the estimated opponent’s strategy in M* search.  

To handle the effects of hidden information, Monte Carlo sampling simulates iterations 

through multiple possible game states according to the actual probability distributions of 

unknown dominos in the boneyard and the opponent’s hand. 

The hierarchal approach to this decision system involves first predicting an 

opponent type, then applying the opponent’s strategy to M* search.  Opponent types from 

here on will be defined as “targets.”  There are three targets identified for this research.    
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Each target applies a different strategy to play the game.  The first target is the 

random-play agent, which makes legal plays of pseudo-randomly selected dominoes at its 

turns.  The second target agent is the myopic scoring target, which tries to score the most 

points at each play without considering consequences on future plays.  The final target 

plays myopically defensive by blocking the player from taking an action when there is an 

opportunity.  The myopic defense target agent also keeps the board at a low scoring level 

to deny the player from achieving high scores during turns. 

The random target agent plays legal moves in a pseudo-random fashion.  This 

target selects its plays from a list of legal moves; however the move is selected at 

random, with equal likelihood for any legal move.  The seed for this random number 

generator can either be generated based on the system clock for individual games or a 

game iteration number for experimentally controlled games during repeated testing.   

The myopic scoring target agent is a greedy scorer that selects a legal move that 

scores the highest from all legal moves with no concern for the future value of the move 

later in the game.  If a tie arises between possible moves or there is no score available at 

that play, the myopic scoring player plays domino that produces the highest board count 

to increase high scoring opportunities for future plays. (The board count is the sum of all 

of the outside numbers of the domino chain.) 

The myopic defense target agent’s goal is to reduce the number of plays available 

to its opponent as well as prevent an opponent from obtaining a high score.  This agent 

selects actions that limit the player’s legal plays on the next turn.  Figure 9 shows an 

example of board states from least favorable to most favorable for the defensive target.   
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Figure 9:  Play options available for the player based on target’s defensive strategy. 

 

In this example a)’s playable options (from left to right) are 2, 3 and 1 giving a 

player three options to choose from. b)’s playable options (from left to right) are 1 and 3 

allowing for two playable options, while c)’s only playable option is 3.  Limiting playable 

options restricts the opponent’s available actions, therefore creating a possible pull or 

pass instance.  Furthermore, if there are no available defensive plays or a tie in defensive 

options, the defensive target plays the domino that produces the lowest board count to 

keep all possible scores low.  

The player agent computes the M* search decision before each play.  The 

opponent model used in M* is the same strategy that one of the targets will apply.  Since 

M* is a variant of MiniMax search [6] , it maximizes the player’s decision based on 
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predicted decisions of the target.  Monte Carlo rollouts are applied to the M* search to 

iterate through many possible board state situations.  These rollouts provide the decision 

engine with an expected game state outcome in order for the player to make an optimal 

decision in an uncertain environment, given that the opponent model matches the true 

opponent. 

Testing. 

Testing this approach involves measuring the prediction accuracy of an opponent 

classifier as well as measuring how well M* search performs in the game of dominoes 

against specific player types.  The accuracy of the opponent classifier is evaluated by 

applying a confusion matrix of all target predictions.  Table 5 illustrates the data 

representation of this matrix.   

Table 5:  Confusion matrix of the opponent modeler. 

  Predicted Target 

  Random Myopic 
Scoring 

Myopic 
Defense 

A
ct

ua
l T

ar
ge

t Random A B C 

Myopic 
Scoring D E F 

Myopic 
Defense G H I 

 

Capital letters represent the number of predictions computed by the opponent 

classifier for a specific target.  The rows indicate the actual target type (or labels of the 

sample data) and the columns represent the predicted target type.  The letters in the 

diagonal (A, E and I) represent all accurately predicted data while all other letters 
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represent the inaccurate predictions [15].  The accuracy of the opponent classifier is 

computed by applying the table values to  

 

 
(5) 

 

where AC is the accuracy, A, E and I are the numbers of accurately predicted targets and 

Stotal is the total number of targets evaluated.  Furthermore, when applied to the opponent 

classifier, the testing prediction accuracy of the classifier is calculated by 

 

 
(6) 

 

where ACOM is the prediction accuracy of the opponent classifier, p is the number of 

correctly predicted targets and Sturns is the total number of turns predicted by the opponent 

classifier.   

To test the potential and actual performance of an opponent classifier with the M* 

search decision engine, an all-knowing oracle is introduced.  The oracle is a method that 

predicts the target’s state and future actions with perfect accuracy.  The oracle is applied 

to the M* decision engine in place of the opponent classifier to predict the opponent’s 

type.  A set of games is played and all decisions made by the M* decision engine with the 

oracle are verified to validate M*’s performance. 

totalS
IEAAC ++

=)(
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The expected value gain (EVG) of M* with an opponent type over the Nash 

equilibrium player is calculated applying  

 
 

(7) 

where T is the target and M*T is M* search with the target’s strategy, and EM is 

Expectimax.  The value gained by applying the M* search decision engine is calculated 

with both a perfect information and imperfect information environment.  The perfect 

information environment calculates the theoretic upper bound potential of the M* search 

decision engine with an opponent type.  The imperfect information environment 

calculates the actual upper bound value of the engine. 

 The actual value of the M* decision engine with an opponent model is calculated 

by applying the opponent model to the engine.  This value is a representation of how well 

the opponent model predicts the target.  Similar to the expected value gain calculations, 

the actual value gain is calculated in perfect and imperfect information environments to 

show perfect state information and real world conditions respectively. 

 Table 6 illustrates a four quadrant matrix of desired results for testing the M* 

algorithm.  Rows of the matrix represent the state information given for all games played.  

Columns represent the given target predictor.  With this configuration, quadrant one and 

two show a perfect state information environment, while quadrants three and four apply 

Monte Carlo Rollouts (MCR) to account for hidden information.  Quadrants one and 

three are EVG calculations while two and four are actual values. 

*( | ) ( | )TEVG U M T U EM T= −
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Table 6:  Quadrant chart of experimental results. 

  
Target Information 

  
Target Oracle OM 

State 

Info 

State 
Oracle 

1. 2. 
Expected Value 

Gain Actual Value 

Upper Bound  

MCR 

3. 4. 
Expected Value 

Gain Actual Value 

 Real World 
 

The perfect information environment yields the upper bound of M*’s potential for 

environment and actual values.  The target oracle predicts a target’s strategy with 100% 

accuracy.  This allows the M* engine to apply the correct target type at every play of 

every game, therefore each game reflects an optimal decision at every play with respect 

to M*’s capabilities.  Likewise, when applying perfect state information to the 

Expectimax engine, Expectimax plays optimal with respect to its capabilities.  Thus, the 

maximum gain is calculated by taking the difference in value between both engines with 

respect to score differentials or total games won/tied. 

Dominoes Experimental Setup 
 
This section describes the experimental setup that answers the question of 

whether an opponent model can improve a player’s decision in the game of two player 

dominoes – and by how much is the improvement. The setup consists of an adversarial 

search decision engine as well as three target agents.  The adversarial search decision 

engine consists of the M* and Expectimax search algorithms.  The player agent employs 
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this engine when playing against each of the three targets in the setup.  The next two 

subsections describe these methods.    

Adversarial Search Decision Engine.  

The player agent consults the adversarial search engine at every play.  This 

decision engine makes decisions through the application of M* and Expectimax.  M* is 

experimental setup for this research.  This algorithm is applied to make optimal decisions 

against a specific (non-rational) target throughout the game.  Expectimax the controlled 

setup.  This engine is applied to make game theoretic plays for a Nash equilibrium 

solution. 

Since dominoes is a partially observable game, play decisions are made by 

running the adversarial search algorithm through several Monte Carlo rollouts over 

possible partitions of the unknown states between the boneyard and the target.  These 

simulations allow the agent to make a probabilistically weighted decision based on the 

expected value of several possible game states.  Values of each player action are 

averaged over the all simulations. This results in an expected optimal action for the 

player at every play.  The decision engine then selects the action with the highest 

expected value.   

Expectimax is a probabilistic variant of the MiniMax adversarial search 

algorithm.  The added benefit to applying Expectimax to dominoes is that it accounts for 

chance nodes.  Chance nodes occur in dominoes when the player or target pulls a domino 

from the boneyard.  The Expectimax algorithm then returns the expected value at that 
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turn depending on how the game terminates at each chance pull.  Equation 8 represents 

how the expected value is determined at each chance node.  

  (8) 

 

where v represents the value for a specific pull from a set of dominoes in the boneyard, 

P(move) represents the probability of a domino from the boneyard and n represents the 

number of boneyard pulls.  The input for Expectimax algorithm is the board state.    

Figure 10 illustrates how Equation 8 is implemented within the Expectimax algorithm.  

The output from Expectimax is the play with the highest expected value at a specific 

chance node. 
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Figure 10:  Expectimax algorithm [16, 26]. 

 

To minimize computation, the dominoes Expectimax algorithm only employs 

Expectimax when there is more than one play to select.  When there is one action or 

fewer to choose from, running adversarial search will not yield a different result.   

The M* algorithm is also a variant of MiniMax (or Expectimax in games with 

probability); however, it also takes into account the adversary’s (or target’s) strategy.  For 
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the game of dominoes, the target’s chosen move is the only chosen action for every target 

play.  This differs from Expectimax because Expectimax searches through all moves of 

the target.  Figure 11 illustrates how the MIN-VALUE function runs a TARGET-

DECISION method to obtain the target’s decision.  Each TARGET_TYPE(state) method 

is defined in the section labeled “Targets” 

 
Figure 11: M* Algorithm for dominoes [6, 16, 26]. 

 

The computational benefit from only applying the target’s decision is that the search 

engine only explores branches of the target’s decisions.  This pruning method not only 
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speeds up computation but it also provides a more exact representation of the target’s 

decisions (assuming an accurate opponent model).  Figure 12 (created with Gambit game 

theory software [21]) illustrates a game instance in which Expectimax evaluates all 

possibilities applying a Nash equilibrium solution to the game instance.  Figure 13 

(created with Gambit game theory software [21]) illustrates how the M* algorithm only 

focuses on the actions that the myopic scoring target actually takes.  Applying M* to the 

same game tree reduces the tree from 18 leaf nodes to 3 leaf nodes.   The dashed ovals in 

Figure 12 represent the branches chosen in Figure 13 .  All other branches are pruned in 

this computation. 

 

 



 

 

50 

 

 
Figure 12: Game tree before M* pruning process. 

 

 

Figure 13: Game tree after M* pruning process. 
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The adversarial search engine is designed to provide a Nash equilibrium decision 

with Expectimax computations.  This engine is also applies M* search to choose a best 

response against specific targets as well as reduce the computational complexity of the 

game (assuming myopic targets).  In order for M* to predict the behavior of the target, 

the target decision algorithm must be established.   

Targets. 

This sub-section describes the three targets that play against the player agent.  

Each target starts with a set of legal moves to choose from (if there is a move to make).  

From here, they make the best decision based on stationary methods.  The random-play 

target agent plays a uniformly randomly chosen domino out of the legal moves that it can 

play.  The myopic scoring target plays the domino in the position that scores the highest.  

The defensive target plays the domino that hopefully minimizes the opponent’s 

opportunity to score in the future. 

The random target agent makes its choice by using a pseudorandom number 

generator.  This seed for the generator is generated at the beginning of the game.  This 

method chooses a random number between 0 and the size of the target’s (pre-generated) 

possible moves list minus 1.  It then selects from the list of dominoes, the domino that 

has an index that matches the random number chosen.   

The myopic scoring agent method evaluates every possible move and selects the 

highest scoring move.  In the case of a tie, the myopic scoring agent plays the domino 

that sets the highest board count.  Figure 14 illustrates the algorithm for the myopic 

scoring target. 
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Figure 14:  Algorithm for myopic scoring target. 

 The defensive scoring target makes plays that create a high defensive stance for 

the target.  This is completed by computing a unique defensive score or utility value for 

defense.  The play with the highest defensive score is the play that the defensive target 

makes. 

The defensive score is calculated by counting the number of available matching 

values on the outside dominoes of the board and subtracting this number from four (since 

there are at most four playable locations on the game board).  Figure 16 (lower cell) 

illustrates the algorithm for calculating this value.  This value is an integer between 0 and 

3, where 0 indicates four available positions to play on and 3 indicates only one available 

position to play on.   

Having a high defensive score inversely proportional to the number of matches on 

the board is important because higher values indicate there are fewer possible actions for 

the player.  Fewer actions for the player entail blocking potential for the defensive agent.  
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Figure 15 illustrates an example of how the defensive score is used in making a defensive 

decision. 

 

Figure 15:  Example of defensive score calculation to make a decision. 

 

In this example the target has an option of playing the (0|3) domino on the left or 

right side of the domino board.  If the domino is played on the right side there are 2 

numbers available to play on by the player.  The defensive score, in this case, is 2.  

Playing the (0|3) on the left side leaves only one option and the score calculated this 

option is 3, which is a higher score than playing on the right.  Having less numbers to 

play on lowers the probability of having a play.  Figure 16 illustrates the algorithm for 

completing this task. 
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Figure 16:  Algorithm for defensive scoring target. 

 

Each target employs its own strategy in order to test the quality of the opponent 

modeler with certain types of play.  The next section describes how the opponent modeler 

is fabricated in order to distinguish between each target agent. 

The Opponent Classifier. 

The opponent classifier employs machine learning to predict targets.  Machine 

learning tools for this research are chosen by matching classifier capabilities to the 

requirements of this research project.  The inputs and outputs are then chosen.  Algorithm 

selection is performed by selecting the best performing classifier after employing 5-fold 

cross validation across all classifiers.  Furthermore, the sample set is a compilation of 

target versus target competition (i.e., random versus random, random versus myopic 
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scorer, etc.) where data from each turn are sample rows.  The chosen classification tool is 

applied to the game engine to provide target prediction.  

The classifiers considered for this research are naïve Bayes, logistic regression, 

decision trees, support vector machines (or SVM’s) and neural networks. To obtain the 

best algorithm for this research, the following research requirements are established: 

1. Classifier must distinguish between 3 target classes 

2. Classifier must be able to handle large data sets (>10,000) 

3. Classifier must recognize interactions between features (i.e. if a correlation 

between two features distinguishes one class from another) to increase the 

potential of the feature set 

From these requirements, the matrix in Table 7 is devised to find the classifiers 

that best fit this research platform.  Information from [1, 7, 29] describe the reasoning for 

the decisions in Table 7. 

Table 7:  Opponent Modeling Classifier Requirements Matrix. 

  Output Choice - Three 
Targets 

Large Datasets >10,000 
samples) 

Interactions Between 
Features 

Naïve Bayes YES NO NO 
Logistic 

Regression NO YES YES 

Decision Trees YES NO (easily over-fits) YES 
Random 
Forests YES YES YES 

SVM's  NO (without kernel) YES YES 
Neural 

Network NO YES YES 

LDA NO YES YES 
MDA YES YES YES 
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Based on the requirements above, Table 7 shows that random forests and multiple 

discriminant analysis (MDA) are the best possible classifiers.  The inputs and outputs of 

the opponent modeling classifier are provided in Table 8.  

Table 8:  Classifier Inputs. 

Classifier Features 
1 Points Scored/Turn (double: 𝑥 ≥ 0.00)* 
2 Defensive Score (integer: 0 ≤ 𝑥 ≤ 3)* 
3 Total Player Pulls/Turn (double: 𝑥 ≥ 0.00)* 
4 Total Scoring Plays/Turn (double: 𝑥 ≥ 0.00)* 
5 Board Count (integer: 𝑥 ≥ 0)* 

Classifier Output 

1 

Target Number (integer: 0 ≤ 𝑥 ≤ 2)* 
0 – Random Target 
1 – Myopic Scoring Target 
2 – Myopic Defense Target 

*Variable x is the range of values that the classifier will accept.  
 

Inputs 1, 3 and 4 are normalized by the “Turn” number of the game.  Points 

Scored is the total point value earned by the target.  The Defensive Score is the same 

score defined by the defensive target.  Total Player Pulls is the total number of times the 

target has caused the player to pull from the boneyard up to that point in the game.  Total 

Scoring Plays is the total count of scoring plays the target has made up to that point.  The 

Board Count input is the sum of all outside domino pips.  (For example, Figure 17 

illustrates a game instance with a Board Count of 16.  This value is calculated by adding 

all outside values (clockwise for this example) 1+6+5+4 =16.)  Lastly, data is labeled in 

reference to the target class, where class numbers range in integers between 0 and 2.   
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Figure 17:  Domino board representation where the board count is 16. 

 

5-fold Cross validation is employed to select the better machine learning 

algorithm where fitness is decided by the accuracy of each classifier’s confusion matrix.  

Equation 9 illustrates the accuracy calculation per the confusion matrix in Table 5. 

 

 

(9) 

where Stotal is the size of the sample set introduced to the classifier and A, E and I are the 

samples that the classifier accurately classified. 

Each classifier is trained by playing games between each target.  This training 

technique is employed to make sure data are provided that illustrate as many different 

play situations as possible for each target.  Table 9 illustrates the order of training per 

game where each play is a sample of data.  The data set size increases as this training 

order is repeated. 

totalS
IEAACAccuracy ++

=)(
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Table 9: Classifier training order per game. 

Game Player Target 
1 Random Random 
2 Myopic Defense Random 
3 Myopic Scoring Random 
4 Random Myopic Defense 
5 Myopic Defense Myopic Defense 
6 Myopic Scoring Myopic Defense 
7 Random Myopic Scoring 
8 Myopic Defense Myopic Scoring 
9 Myopic Scoring Myopic Scoring 

 

From this data set, 80% of the data is applied to training and testing while the other 20% 

is employed for validation.  Once testing and validation is complete, the chosen classifier 

is equipped to pair with the M* algorithm and is ready for testing.  The next section 

describes the experimentation process that shows the value M* provides to double of 

dominoes for a particular target. 

Evaluation 
 
This section facilitates the experimentation processes involved to show if M* with 

an opponent modeler adds value to a player agent in the game of two player dominoes.  

Testing implements all possible starting conditions in a set of double-3 dominoes with a 

boneyard of 4 with players receiving 3 dominoes apiece.  This research provides evidence 

to whether the M* search decision process adds value to a player agent competing against 

three types of domino opponents.   

To evaluate this hypothesis, results from all competitions are tabulated and 

compared with two types of significance tests.  The first type of test called the difference 

of means significance test that evaluates the significance of the expected and actual value 
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gains.  The second test is the binary test that evaluates the number of M* wins.    The null 

hypothesis 𝐻0, of this research states that there is no significant improvement over 

Expectimax when employing M* search.  The alternate hypothesis H1, states that M* 

provides an improvement over Expectimax to the player agent’s game playing ability in 

both score differentials and total wins/ties. 

The difference of means is a one-tailed test that evaluates the mean scores of all 

score differentials between the Expectimax decision engine and M*.  The null hypothesis 

for this test is ℎ0:  𝜇2−𝜇1 ≤ 0,  stating that there is either no difference in the means or 

(for this research), there is not enough information to show that M* shows a significant 

expected gain in value over Expectimax.  The alternative hypothesis, ℎ0:  𝜇2−𝜇1 > 0 

states that M* shows significant gain over EM.   

Difference of means. 

For the difference of means the critical region is found on the Z-table.  The Z 

score is calculated by finding 𝑍𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 𝑧𝑡𝑎𝑏𝑙𝑒 × 𝜎𝜇2−𝜇1, where 𝜎𝜇2−𝜇1 is the standard 

deviation of the distribution of the difference of means and 𝑍𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 is the critical value.   

 

 𝜎𝜇2−𝜇1 =  �
𝜎22

𝑛
+
𝜎12

𝑛
 

(10) 
 

 

where n is the population size, and  𝜎12and 𝜎22 are the population variances. If 𝜇2−𝜇1 

falls within the critical region (which is every value greater than the critical value), the 

null hypothesis is rejected and employ the alternative hypothesis. 
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Binary-test. 

The binary test is a two tailed test that is applied to data with two outcomes [8].  

This test is applied to the win/tie data to statistically show that the win/tie percentages are 

not the same.  This test is conducted by comparing a Z score with critical values from a 

Z-table.  Equation 11 illustrates how to find the Z-score  [8]. 

 

 

n
pq

p
n
X

z
−

=  
(11) 

 

where p and q represent the prior probabilities that Expectimax will win according to its 

data set along with its complement respectively.  X is M*’s prior probability compared 

with EM’s prior probability of wins plus ties and n represents the size of the sample 

space. 

Illustrating the data. 

  Data is compared using two types of tables.  The first type illustrates score 

differential data.  Table 9 illustrates both decision engines against all three targets as well 

as the difference between each engine.  This difference is known as the expected value 

gain for score differentials.  The actual value gain also applies this table to show the 

difference in values between M* and Expectimax. 

 
Table 10:  Sample score differential results table for the value of the M* decision engine 

after all levels and factors of experimentation. 
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𝑻𝒂𝒓𝒈𝒆𝒕𝒔 Random Myopic 
Scoring 

Myopic 
Defense 

Decision 
Engine 

M* 
 (Source) Expectimax M*  

(Source) Expectimax M* 
(Source) Expectimax 

Fully 
Observable a b c d e F 
EVGscore ∆ a-b c-d e-f 
%Accuracy I% J% K% 

 
The lower case letters in Table 9 represent the average score differentials between the 

player and the target from the prospective target dataset.  The upper case letters represent 

the prediction accuracy of the opponent classifier.    The second type of table is the 

win/tie data table.  Table 11 is a representation of the wins table that is applied to tabulate 

the environment and actual values for wins data. 

Table 11:  Sample win/tie data table for the value of the M* decision engine after all 
levels and factors of experimentation. 

Targets Random Myopic 
Scoring 

Myopic 
Defense 

Decision 
Engine 

M* 
 (Source) Expectimax M*  

(Source) Expectimax M* 
(Source) Expectimax 

Fully 
Observable a b c d e F 
EVGwins/ties a-b c-d e-f 
%Accuracy I% J% K% 
 

The lower case letters represent the total values for the wins and ties against each target 

with each decision engine.  The upper case letters represent the prediction accuracy of the 

opponent classifier.  Each win/tie has a value of 1 and each loss has a value of 0.  All four 

Quadrants from Table 6 are explained applying the  and Table 11 structures. 
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 The number of tests to be run correspond to the number of levels and factors of 

experimentation.  Table 12 illustrates the levels and factors for comparing both decision 

engines.   

Table 12:  List of levels and factors for experimentation. 

Information 
Source (I) 

Observability 
(O) Target (T) Starting 

State (S) 
Decision 

Engine (E) 
Repeat 

(R)  

Oracle - Truth Full Random 

1-4200 
M* Search 

1-12 Myopic Scoring 
Opponent 
Modeler Partial Expectimax 

Search Myopic Defense 
 

The four quadrants of data are represented in the two left most columns.  

Equation 2 is applied to calculate the number of possible starting states below.   

 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑆𝑡𝑎𝑡𝑒𝑠 = � 𝑆𝑒𝑡 𝑠𝑖𝑧𝑒
𝑏𝑜𝑛𝑒𝑦𝑎𝑟𝑑 𝑠𝑖𝑧𝑒� × �𝑆𝑒𝑡 𝑠𝑖𝑧𝑒 − 𝑏𝑜𝑛𝑒𝑦𝑎𝑟𝑑 𝑠𝑖𝑧𝑒

𝑑𝑜𝑚𝑖𝑛𝑜𝑒𝑠 𝑝𝑒𝑟 𝑝𝑙𝑎𝑦𝑒𝑟 � (12) 

 

 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑆𝑡𝑎𝑡𝑒𝑠 = �10
4 � × �63� = 4,200 (13) 

 

There are three target types that are played against in all 4,200 starting states by both 

decision engines.  Furthermore, each test is repeated 12 times to account for variations in 

boneyard pulls. 

Equation 14 applies Table 12 and shows of the number of tests needed to 

complete the dataset. 

 𝐼 × 𝑂 × 𝑇 × 𝑆 × 𝐸 × 𝑅 = # 𝑜𝑓 𝐺𝑎𝑚𝑒𝑠 (14) 
 

where all variables are identified in Table 12.  This calculates to 
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 2 × 2 × 3 × 4200 × 2 × 12 = 1,209,600 𝐺𝑎𝑚𝑒𝑠. (15) 
 

All experimentation follows the guidelines outlined in this chapter. The next 

chapter provides an in depth discussion on the results of this experimentation.  Chapter 4 

also describes which classifier is applied to the opponent model, then demonstrates how 

the M* decision engine performs against a target with respect to a Nash Equilibrium 

player agent.  Results from all four quadrants are analyzed for statistical significance to 

show whether the agent gains or loses value over the Nash equilibrium player depending 

on the information source and the environment.   
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IV.  Analysis and Results 

Chapter Overview 

This chapter explains the results gathered from evaluating the opponent modeling 

algorithm with the EM and M* decision engines.  The first series of experiments 

evaluates which classifying algorithm is the best for running the opponent modeler.  Next 

the expected value gain of the opponent modeler is evaluated.  Finally, the actual results 

between the M* and Expectimax decision engines are shown.  Results gathered are in the 

form of score differentials between the player agent and the target. 

Classifier Performance Results 
 
Evaluating each Classifier. 

 There are two classifying algorithms chosen as candidates to run the opponent 

modeler.  The classifiers are evaluated at three different sample sizes to assess how well 

they perform.   The first candidate is the MDA classifier.  Next is the random forests 

classifier.  Each classifier is tested and validated using of the 5-folds cross validation with 

8k, 50k and 130k samples of data, where 80% of the data samples are applied to training 

and testing and 20% of the data is applied to validation for each dataset.  Classification 

accuracy (AC) on the validation data from these testes are illustrated via the confusion 

matrices.  



 

 

65 

 

 

Table 13:  Confusion matrix validation results on 1,649 samples from the MDA Classifier 
with all three targets and 8,242 samples. 

  Predicted Target 

  Random Myopic 
Scoring 

Myopic 
Defense 

A
ct

ua
l T

ar
ge

t Random 226 166 151 
Myopic 
Scoring 147 279 133 

Myopic 
Defense 145 164 238 

 

Applying the results from this table to Equation 9 for Table 13, yields 𝐴𝐶 =

226+279+238
1,649

= 0.451.  The time to complete training, testing and validation is 50 ms.  

These data show that this classifier has the ability to classify three data types with over its 

prior percentage in a small amount of time.  Table 14 illustrates the performance with 

over 50k samples. 

Table 14:  Confusion matrix validation results on 10,059 samples from the MDA 
Classifier with all three targets and 50,291 samples. 

  Predicted Target 

  Random Myopic 
Scoring 

Myopic 
Defense 

A
ct

ua
l T

ar
ge

t Random 1135 1132 1083 
Myopic 
Scoring 769 1473 1107 

Myopic 
Defense 700 1069 1591 

 

Applying the results from this table to Equation 9 for Table 14, yields =

1135+1473+1591
10,059

= 0.417 .  The time to complete training, testing and validation is 330 ms.  
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These data show that it takes longer to classify the three data types; however, there is no 

value gained from more samples.  This is an indication of over-training the classifier with 

too much data.  Table 15 adds training data to confirm this assumption. 

Table 15:  Confusion matrix validation results on 25,945 samples from the MDA 
Classifier with all three targets and 129,724 samples. 

  Predicted Target 

  Random Myopic 
Scoring 

Myopic 
Defense 

A
ct

ua
l T

ar
ge

t Random 2771 2777 3038 
Myopic 
Scoring 2149 3643 2895 

Myopic 
Defense 1921 2564 4187 

 

Applying the results from this table to Equation 9 for Table 15, yields 𝐴𝐶 =

2771+3643+4187
29,945

= 0.409 .  The time to complete training, testing and validation is 800 ms.   

 These data show that training the classifier with more than 8k samples (with this 

feature set) over trains the MDA classifier.  Therefore, 8k samples is the best sample 

amount (when compared to the other two data sets) for this set of features. 

The next candidate is the random forests classifier.  This classifier undergoes the 

same amount of testing and validation to show its performance.  The following confusion 

matrix analysis illustrates this classifier’s performance. 
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Table 16:  Confusion matrix validation results on 1,319 samples from the Random 
Forests Classifier with all three targets and 8,242 samples. 

  Predicted Target 

  Random Myopic 
Scoring 

Myopic 
Defense 

A
ct

ua
l T

ar
ge

t Random 199 132 113 
Myopic 
Scoring 82 259 109 

Myopic 
Defense 83 110 232 

 

Applying the results from this table to Equation 9 for Table 16, yields 𝐴𝐶 =

199+259+232
1,319

= 0.5231.  These data show that the random forest classifier has a better 

classifying accuracy than the MDA classifier; however, this classifier spends more time 

training and validating.  The time to complete training, testing and validation is 35.32 s.  

Table 17 shows the performance of random forests with over 50k samples. 

Table 17:  Confusion matrix validation results on 8,047 samples from the Random 
Forests Classifier with all three targets and 50,291 samples. 

 

  Predicted Target 

  Random Myopic 
Scoring 

Myopic 
Defense 

A
ct

ua
l T

ar
ge

t Random 908 906 815 

Myopic 
Scoring 350 1627 742 

Myopic 
Defense 354 947 1398 

 

Applying the results from this table to Equation 9 for Table 17, yields    𝐴𝐶 =

908+1627+1398
8,047

= 0.4898 .  This percentage is still larger than each MDA accuracy; 
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however, this percentage, again is lower than the 8k sample trained MDA classifier.  

Furthermore, the time to complete training, testing and validation is 413.31 s, which is 

much longer than MDA and random forests with 8k samples.  Table 18 illustrates the 

random forests classifier performance with ~130k samples. 

Table 18:  Confusion matrix validation results on 20,756 samples from the MDA 
Classifier with all three targets and 129,724 samples. 

 

  Predicted Target 

  Random Myopic 
Scoring 

Myopic 
Defense 

A
ct

ua
l T

ar
ge

t Random 2731 2252 1865 

Myopic 
Scoring 1328 4035 1608 

Myopic 
Defense 1297 2156 3484 

 

Applying the results from this table to Equation 9 for Table 18, yields  𝐴𝐶 =

2731+4035+3484
20,756

= 0.4938 .  These data show that there is a slight improvement over the 

50k sample training set; however, this improvement is not higher than running 8k 

samples.  The time to complete this process is also much higher than >413.31 s, which is 

the time to run the 50k data set. 

Classifier Selection. 

Both classifiers have a higher accuracy with a low sample count.     Training and 

validating with more samples takes much longer while running both classifiers; however, 

the random forests classifier takes much longer than the MDA classifier to run its 

training/validation process.  For 8k data samples, MDA takes 0.50 ms to complete the 
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validation process while it takes random forests over 35 s.  This shows that even though 

random forests produce a higher classification accuracy with less data, it takes 70 times 

longer to obtain this result.  Furthermore, the random forests classifier only gains a 10% 

advantage over MDA and MDA’s classification accuracy for three classes is still greater 

than the prior probability of  1
3
 .  70 times longer training, testing and validating time is 

not worth the 10% gain in percentage; therefore, based on these findings and the amount 

of simulations from the levels and factors of testing, MDA is chosen to complete the 

opponent model data collection. 

Opponent Model Value Assessment  
 
The opponent model value is assessed in two different conditions.  The first 

condition is with perfect information, (as described in quadrants 1 and 2 of Table 6).  

Perfect information provides data on the upper bound value that the opponent modeler 

provides.  These two quadrants show the possibility of gaining value against the Nash 

Equilibrium player while competing against three static targets.  Next the value of the 

model is evaluated in an imperfect information environment (for quadrants 3 and 4).  

This environment demonstrates the actual upper bound value of the game.  Each quadrant 

represents 50,400 games played with EM and M* against each target. 

 All values in each table are tested for statistical significance in accordance with 

calculations described in Chapter 3.  The two tailed binary test shows significance for the 

win/tie total data.  Its null hypothesis states that there is no difference in win/tie 

percentage between M* and EM.  The alternative hypothesis states that there is a lower or 

higher difference in win/tie percentage.  The one-tailed difference of means test is applied 
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to the score differential data.  The null hypothesis of this test states that the difference of 

means between M* and EM is less than or equal to zero, while the alternative states that 

the difference of means is greater than zero.  All significant values are computed with a 

95% confidence interval.  Cells with statistically insignificant values are shaded gray.   

Perfect Information. 

The data in Table 19 and Table 20 illustrate the upper bound expected value gains 

of the opponent model.  The first three columns represent the expected value gains of the 

opponent modeler against all three targets.  The bottom row shows the classification 

accuracy of the model M* employs.  Since M* receives target predictions from the oracle 

in quadrant one, the prediction accuracy is 1.00 for all three targets. 

Table 19:  Mean per-game score differentials between the oracle and Expectimax for 
each target for 50,400 games in a fully observable environment with a target oracle. 

Targets Random Myopic 
Scoring 

Myopic 
Defense 

Decision 
Engine 

M*  
(Oracle) Expectimax M* 

 (Oracle) Expectimax M*  
(Oracle) Expectimax 

Fully 
Observable 1.869 1.982 1.388 1.269 1.633 1.474 
EVGscore ∆ -0.113 0.120 0.159 
Prediction 
Accuracy 1.00 1.00 1.00 

 

Table 19 illustrates the upper bound expected value gain score value for all 

50,400 games.  Since there is perfect state information and the search reaches the leaf 

nodes of the tree, Expectimax performs at its best.  Furthermore, M* operates at its best 

with a known state and target strategy.  This table represents the environment in which 

there exists perfect information in state and target strategy; therefore both engines are 
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functioning at their highest aptitude.  With both engines playing at their best, this 

quadrant displays (given a specific target) if it is possible for M* to outplay the EM 

engine. 

All players except for the random target contribute a gain for the M* engine.  

Characteristics of the random player involve making unpredictable moves.  Furthermore, 

the M* algorithm’s performance depends on making move predictions.  These 

predictions prune parts of the tree in which it assumes that the target will not play.  

Incorrect information causes M* to make the wrong decision and traverse the wrong 

nodes.  The EM engine makes decisions based on playing a Nash Equilibrium opponent, 

which means that it examines all plays the opponent can take and expects its opponent to 

make an optimal move.  In short EM is expected to make a better decision than M* 

assuming M* obtains an incorrect target prediction. Table 20 displays the highest 

potential gain of win/tie totals between the EM and M* decision engines.  The scoring 

target is positive, which shows that Expectimax loses 466 more games than the M* agent 

in this quadrant. Expectimax also loses 352 more games playing against the defense 

target.  This means that M* has the potential gain of these values in the other three 

quadrants. The random target value is insignificant.   
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Table 20: Total win and tie mean differences between oracle and Expectimax for each 
target in a fully observable environment with a target oracle. 

Targets Random Myopic 
Scoring 

Myopic 
Defense 

Decision 
Engine 

M* 
 (Oracle) Expectimax M* 

(Oracle) Expectimax M* 
(Oracle) Expectimax 

Fully 
Observable 34,107 34,031 32,209 31,743 33,257 32,905 

EVGwins/ties 76 466 352 
Prediction 
Accuracy 1.00 1.00 1.00 

Table 21 and Table 22 illustrate the actual value for double-3 dominoes with 

perfect state information with the opponent model containing an MDA classifier trained 

and validated with 8k samples.  The one-versus-rest (offline) prediction accuracy for the 

MDA is 45%.  Table 21 shows the actual value in score differentials and Table 22 

illustrates the actual value in wins over the Expectimax.  Furthermore, these tables show 

the actual on-line prediction accuracy against all three targets.  

Table 21:  Mean per-game score differentials between oracle and Expectimax for each 
target in a fully observable environment with an opponent model. 

Targets Random Myopic 
Scoring Myopic Defense 

Decision 
Engine 

M* 
 (OM) Expectimax M*  

(OM) Expectimax M* 
(OM) Expectimax 

Fully 
Observable 1.984 1.982 1.143 1.269 1.517 1.474 
EVGscore ∆ 0.002 -0.126 0.043 
Prediction 
Accuracy 0.316 0.465 0.336 

 

All expected value gains in Table 21 are statistically insignificant.  The actual 

prediction accuracy for the defensive target is 0.336 which is slightly higher than the 

prior percentage (of a random guess) but much lower than 1.00.  The prediction accuracy 

for the myopic scoring agent is much higher than the prior probability of 1/3; however it 
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still does not help M* enough to produce a gain against EM.  Furthermore, the random 

target prediction accuracy is lower than the prior probability.  This shows that the 

classifier selects (or classifies) the myopic scoring target over the other two targets.  

Table 22, illustrates the actual values with total wins and ties.   

Table 22:  Total win and tie mean differences between oracle and Expectimax for each 
target in a fully observable environment with an opponent model.   

Targets Random Myopic 
Scoring 

Myopic 
Defense 

Decision 
Engine 

M* 
(OM) Expectimax M* 

(OM) Expectimax M*  
(OM) Expectimax 

Fully 
Observable 34,212 34,031 31,345 31,743 32,988 32,905 

EVGwins/ties 181 -398 83 
Prediction 
Accuracy 0.316 0.465 0.336 

 

Table 22 illustrates the gain in win/tie totals for M* with perfect state and 

imperfect target identity (action) information.  The imperfect action information affects 

the myopic scoring win/tie differentials with a loss of 864 more games than quadrant 1.  

The Myopic defense and random targets produce insignificant gains with the information 

provided. 

Holding the state information constant allows the study of how much affect 

prediction accuracy has on performance.  The M* decision engine makes optimal 

decisions based on the target information it receives.  These data show that with 

prediction dropping from 1.00 to less than 0.50 the M* decision engine performs with 

lower gains than with perfect target identity information.  Therefore, this depicts that this 

drop in action information contributes to the loss in score differential and win/loss gains.  
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Imperfect Information.  

Games played with imperfect state information are shown in Table 23 through 

Table 26.   These games are played with an environment identical to regular play 

(assuming the target type is known).  Quadrant three shows games in which state 

information is imperfect while the target type is known.  Quadrant four illustrates the 

results for imperfect target information and state.   

Table 23:  Mean per-game score differentials between M*(oracle) and Expectimax for 
each target under imperfect information in a partially observable environment with a 

target oracle. 

Targets Random Myopic 
Scoring 

Myopic 
Defense 

Decision 
Engine 

M* 
 (Oracle) Expectimax M*  

(Oracle) Expectimax M* 
(Oracle) Expectimax 

Fully 
Observable 1.556 1.526 0.763 0.726 1.027 0.914 
EVGscore ∆ 0.030 0.037 0.113 
Prediction 
Accuracy 1.00 1.00 1.00 

 

Table 23 illustrates games with imperfect state but the target type is known.  

Holding the target oracle constant allows for the comparison of how partial observability 

affects the score difference EVG.  Since the oracle perfectly predicts the target for M* in 

this quadrant, M* is able to gain an advantage over the Nash Equilibrium agent. The 

myopic defense provides the largest gain for this table with 0.113.  This value is down 

0.46 from the potential gain of 0.159 shown in results from Table 23.  This shows that the 

imperfect state has an effect on the amount of gain M* provides over the Nash 

Equilibrium player.  The other two target values provide insignificant gains.  Table 24 
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illustrates the expected value gain for the number of wins/ties with imperfect state 

information and a target oracle. 

 
Table 24:  Win and tie totals between M*(oracle) and Expectimax for each target in a 

partially observable environment with a target oracle. 

Targets Random Myopic 
Scoring 

Myopic 
Defense 

Decision 
Engine 

M* 
 (Oracle) Expectimax M*  

(Oracle) Expectimax M* 
(Oracle) Expectimax 

Fully 
Observable 32,962 32,887 29,759 29,708 30,988 30,688 
EVGwins/ties 75 51 310 
Prediction  
Accuracy 1.00 1.00 1.00 

 

 These data show that there is potential to win and/or tie 310 more games than the 

Nash Equilibrium agent in a partially observable environment for the myopic defense 

target.  The other target values are insignificant in this quadrant.   

Actual Value Evaluation 
 
Table 25 and Table 26 illustrates the opponent model’s actual value table for the 

data taken in all 50,400 starting states using both imperfect state information and an 

imperfect opponent classifier used with M*.    These data show the real world 

environment in which dominoes games take place.  Furthermore, these tables illustrate 

how the M* algorithm fares against a Nash equilibrium player in the environment when 

playing against three different target types.  
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Table 25:  Mean per-game score differentials between M*(OM) and Expectimax for each 
target in a partially observable environment with an opponent model. 

𝑻𝒂𝒓𝒈𝒆𝒕𝒔 Random Myopic 
Scoring 

Myopic 
Defense 

Decision 
Engine 

M* 
 (OM) Expectimax M*  

(OM) Expectimax M* 
(OM) Expectimax 

Fully 
Observable 1.507 1.526 0.761 0.726 .988 0.914 
AVGscore ∆ -0.019 0.035 0.074 
Predict Acc. 0.272 0.627 0.170 

 

Table 25 shows that the best performance gain for the M* decision engine when 

compared with a Nash equilibrium player, occurs against the myopic defense target (with 

a 0.074 actual value).  This shows that in a real world environment the M* decision 

engine has an actual gain of .074 points than the Nash equilibrium.  The other two targets 

show insignificant gains.  Table 26 illustrates how many games M* wins or ties over 

Expectimax. 

Table 26:  Win and tie total difference between M*(OM) and Expectimax for each target 
in a partially observable environment with an opponent model. 

𝑻𝒂𝒓𝒈𝒆𝒕𝒔 Random Myopic 
Scoring 

Myopic 
Defense 

Decision 
Engine 

M* 
 (OM) Expectimax M*  

(OM) Expectimax M* 
(OM) Expectimax 

Fully 
Observable 32,205 32,887 29,717 29,708 30,846 30,688 

EVGwins/ties -682 9 158 
Predict Acc. 0.272 0.627 0.170 

 
These data show that there is no significant gain in games over the Nash 

Equilibrium agent when playing against the three targets.  The prediction accuracy of this 

data set is the lowest with the myopic defense target.  This shows that (while holding 
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imperfect information as a constant from quadrant 3 to 4), lowering the prediction 

accuracy to under 1.00 affects the performance of the M* engine.   

The highest prediction accuracy is attributed to the myopic scoring agent.  This 

value of 0.627 shows that the MDA classifier predicts the scoring target more often than 

the other two targets; however this is not enough to gain value over the Nash equilibrium 

agent.  

Against the random agent, M* produces a significant loss of 682 games in 

comparison with the Nash Equilibrium agent.  The random agent has an unpredictable 

strategy.  Furthermore, M* relies on a known target type and strategy to perform well.  

The lack of a deterministic strategy to make decisions causes M* to play sub-optimal 

games.  Expectimax is able to make optimal moves without a strategy based on its 

expectation of the target to play optimally.  This explains why the Nash Equilibrium 

agent is expected to win more games against the random target. 

Summary of Results 
 
The total expect value gain in the first quadrant is 0.159.  This value drops in the 

second quadrant due to the lack of perfect target knowledge.  The same observation 

occurs with the myopic scoring expected value gain.  Even with an opponent modeler 

with a 46% prediction accuracy, this gain is insignificant.   

The partial observable quadrants show that there is potential to score a gain of 

0.113 over the Nash Equilibrium player with the myopic defense target. The other two 

values are insignificant in the third quadrant.  The end results show that in the last 

quadrant, there is still a statistically significant value gained over the Nash equilibrium 
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agent of 0.74 by the M* agent with the opponent modeler while playing against the 

defense agent.   

The Defense target demonstrates a 352 game advantage over the Nash 

equilibrium player in the perfect information environment playing with a target oracle; 

however, this gain is lost when applying the opponent modeler at a 33.6% prediction 

accuracy.  Similar to these results, the third quadrant of data illustrates a potential gain of 

310 games over the NE player.  The prediction accuracy is much lower in the fourth 

quadrant at 17%. This lower prediction shows to affect the M*’s ability to make good 

decisions and win more games. 

In summary, the data show that the M* decision engine with an opponent modeler 

is able to score higher than the Nash Equilibrium agent.  It also has the potential to win 

more games.  The opponent modeler’s accuracy has an effect on how many games the 

M* player wins as well as how many points it scores.  Chapter 5 provides conclusions of 

this thesis research and future work that can add advancement to this research topic. 
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V.  Conclusions and Future Work 

Based on the results of characterizing relative performance improvement over the 

Nash Equilibrium solution for three types of dominoes-playing opponents, applying M* 

search with an opponent model shows promise as long as the model has a high quality 

prediction of board state information (to include what is in the other player’s hand and 

what dominos are in the boneyard).  This chapter summarizes the findings in the data and 

explains where research can further explore this topic. 

This research shows results for the M* decision engine with a 100% prediction 

accuracy and prediction accuracy less than 100%.  Quadrants 1 and 3 contain potential 

values to be achieved by the opponent modeler.  The lower percentages produce lower 

actual results in quadrants 2 and 4.  This means that potential exists for M* win or tie 

more games than a Nash equilibrium player against specific targets. 

The myopic scoring and random targets provide negative or insignificant gains for 

the opponent modeler.  There is potential (from quadrant 1) for the M* search engine to 

have significant gain over Expectimax; however, data show that prediction accuracy of 

the opponent modeler is not good enough to predict the correct target and make an 

optimal decision.  The random target’s contribution to expected and actual gains are 

insignificant to negative, showing that M* has no potential to gain an advantage over the 

Nash Equilibrium player if the target plays a random strategy. 

In conclusion, applying an opponent modeler has potential to add value to an 

agent in double three dominoes for specific opponent types.  If the opponent plays a 
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random strategy, there is no potential.  The accuracy of the opponent modeler has a big 

effect on the way the algorithm makes decisions, even if the opponent classification 

accuracy is over 50% (as shown by the scoring target in the fourth quadrant).  The next 

section explains future work that can help to further this research path. 

Future Work 

Future work for this research topic involve areas where improvements can be 

made with the M* search parameters such as the opponent model and the state provided.  

These parameters can be tuned in order to close the gap between the oracle results and the 

opponent classifier results.  The first area for improvement involves adding an opponent 

modeler for the state of the game.  The next chapter discusses playing against non-

myopic targets.  Then it presents a brief discussion on adding a probability distribution 

over all M* targets decisions and choosing the decision with the highest value.  Lastly 

discussed is applying an online learning module to the classifier in order to learn as the 

agent plays. 

Opponent Modeler for Board State.  

The data show that the value of the opponent modeler is higher in a fully 

observable environment.  Revealing information about the state of the game to the 

decision agent allows it to make better choices.  Therefore adding an opponent modeler 

for state information will provide better results for the opponent modeler if applied to the 

M* search.  
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Non-Myopic Targets. 

Another area to explore is non-myopic targets.  These targets are in line with 

Carmel and Markovitch’s research [6].  Their research explores fully observable games 

where players assume the opponent’s termination condition as well as the evaluation 

function of the opponent.  Applying this concept to a partially observable game means 

that both players will have to model each other and have some intelligence of the board 

state. 

Applying a Probability Distribution Model to the OM. 

The opponent modeling paradigm applied in this thesis performs a three-way 

classification and picks the most likely opponent from the set of three.  In this thesis, M* 

assumes there is only one possible opponent type with certainty.  By altering the output 

of the opponent-modeling classifier to yield a probability distribution over all possible 

targets, M* can form a strategy by selecting from a probabilistically-weighted best 

response to several target strategies instead of just one, whenever their predicted action 

would differ.     

Summary 

In conclusion, this research can be applied to applications that involve two or 

more players that have a desire to gain value in specific environments.  For fully 

observable games, modeling opponent’s actions and applying them to an M* style search 

method provides a player the ability to make better choices as long as the target’s strategy 

is predictable.   
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Appendix A. Rules of Dominoes 

According to Armanino [2], players randomly choose an equal set of two sided 

tiles of a 28 tile set.  Each side of the tiles contains values ranging from blank (or zero) to 

6, making each tile in the set unique.  Figure 18 shows a full set of 28 dominoes. 

 
Figure 18:  Full set of double-six dominoes (28 pieces). 

 
The object of the game is to match the sides of the dominoes with the dominoes on 

the board and be the first to achieve a predefined ending score.  Scoring is achieved by 

adding the horizontal and vertical ends of the dominoes on the table.  If the total is 

divisible by 5, that is a scoring play.  Figure 19 illustrates how moves are made between 



 

 

83 

 

the player and opponent in a simple game with three dominoes per participant

 

Figure 19:  Example 5 turn game 
 
As shown, the player scores twice in this game.  The first score of 15 is made by 

placing the (6|3) domino.  This domino produces a value of 3 on the outside right end, 

which adds to the value of 12 of the (6|6) domino on the left outside end.  The second 

score of 5 is made by the player placing (2|4) with a value of 2 on the left outside end 

adding to (6|3) with a value of 3 on the right side end.  Consequently, the opponent then 

takes advantage of this opportunity to score 10 points by placing the (6|5) on the top edge 

with the value of 5 exposed adding with the 2 and 3.  By placing the (4|1) instead of the 

(4|2), the player could have prevented the opponent from scoring.  In short, this instance 

demonstrates how easy scoring can occur as well as how a player can defend by playing 

the right dominoes at the right time.   

Additional rules state that the player whom achieves a “domino” [12], (plays all 

dominoes in that player’s hand first,) obtains an additional score:  the remaining pip 

(domino dot) total in his/her opponent’s hands.  Defensive play adds to the chance of 
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“dominoing” by preventing the opponent from playing all of their dominoes.  Defense is 

played by placing dominoes that cause the other player to pull from the boneyard.   
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